Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra
نویسندگان
چکیده
We relate an axiomatic generalization of matroids, called a jump system, to poly-hedra arising from bisubmodular functions. Unlike the case for usual submodularity, the points of interest are not all the integral points in the relevant polyhedron, but form a subset of them. However, we do show that the convex hull of the set of points of a jump system is a bisubmodular polyhedron, and that the integral points of an integral bisubmodular polyhedron determine a (special) jump system. We also prove addition and composition theorems for jump systems, which have several applications for delta-matroids and matroids.
منابع مشابه
Neighbor Systems and the Greedy Algorithm ( Extended
A neighbor system, introduced in this paper, is a collection of integral vectors in R with some special structure. Such collections (slightly) generalize jump systems, which, in turn, generalize integral bisubmodular polyhedra, integral polymatroids, delta-matroids, matroids, and other structures. We show that neighbor systems provide a systematic and simple way to characterize these structures...
متن کاملBisubmodular Function Minimization
This paper presents the first combinatorial polynomial algorithm for minimizing bisubmodular functions, extending the scaling algorithm for submodular function minimization due to Iwata, Fleischer, and Fujishige. Since the rank functions of delta-matroids are bisubmodular, the scaling algorithm naturally leads to the first combinatorial polynomial algorithm for testing membership in delta-matro...
متن کاملOperations on M-Convex Functions on Jump Systems
A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-con...
متن کاملNeighbor Systems, Jump Systems, and Bisubmodular Polyhedra
The concept of neighbor system, introduced by Hartvigsen (2009), is a set of integral vectors satisfying a certain combinatorial property. In this paper, we reveal the relationship of neighbor systems with jump systems and with bisubmodular polyhedra. We firstly prove that for every neighbor system, there exists a jump system which has the same neighborhood structure as the original neighbor sy...
متن کاملNeighbor Systems, Jump Systems, and Bisubmodular Polyhedra1
The concept of neighbor system, introduced by Hartvigsen (2010), is a set of integral vectors satisfying a certain combinatorial property. In this paper, we reveal the relationship of neighbor systems with jump systems and with bisubmodular polyhedra. We firstly prove that for every neighbor system, there exists a jump system which has the same neighborhood structure as the original neighbor sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 8 شماره
صفحات -
تاریخ انتشار 1995